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Abstract
In this paper, we study the flag curvature of invariant (α, β)-metrics of the
form (α+β)2

α
on homogeneous spaces and Lie groups. We give a formula for

the flag curvature of invariant metrics of the form F = (α+β)2

α
such that α is

induced by an invariant Riemannian metric g on the homogeneous space and
the Chern connection of F coincides to the Levi-Civita connection of g. Then
some conclusions in the cases of naturally reductive homogeneous spaces and
Lie groups are given.

PACS numbers: 02.40.Ky, 02.40.Sf
Mathematics Subject Classification: 22E60, 53C60, 53C30

1. Introduction

Finsler geometry is an interesting field in differential geometry which has found many
applications in physics and biology (see [1, 2]). One of the important quantities which
can be used for characterizing Finsler spaces is flag curvature. The computation of flag
curvature, which is a generalization of the concept of sectional curvature in Riemannian
geometry, is very difficult. Therefore finding an explicit formula for computing it can be
useful for characterizing Finsler spaces. Also it can help us find new examples of spaces with
some curvature properties. Working on a general Finsler space for finding an explicit formula
for the flag curvature is very computational because of computation in local coordinates. A
family of spaces which has many applications in physics is homogeneous spaces (in particular,
Lie groups) equipped with invariant metrics. The study of homogeneous spaces (Lie groups)
with invariant Riemannian metrics has been a very hot field in recent decades (for example see
[8, 13–16]). During recent years, some of these results extended to Finsler spaces in some
special cases (see [9–12, 17]). (α, β)-metrics are interesting Finsler metrics which have been
studied by many Finsler geometers. Physicists are also interested in these metrics. They seek
for some non-Riemannian models for spacetime. For example, by using (α, β)-metrics,
G S Asanov introduced Finsleroid–Finsler spaces and formulated pseudo-Finsleroid
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gravitational field equations (see [3–6]). F = (α+β)2

α
is a special (α, β)-metric which has

been studied by Shen and Yildirim (see [19]). In this paper, we study flag curvature of these
metrics on homogeneous spaces G/H which are invariant under the action G. We suppose that
α is induced by an invariant Riemannian metric g on the homogeneous space and the Chern
connection of F coincides to the Levi-Civita connection of g. Also we study the special cases
when (G/H, g) is naturally reductive or when H is trivial (H = {e}).

2. Preliminaries

Let M be a smooth manifold. Suppose that g and b are a Riemannian metric and a 1-form on
M respectively as follows:

g = gij dxi ⊗ dxj b = bi dxi.

In this case we can define a function on T M as follows:

F(x, y) = (α(x, y) + β(x, y))2

α(x, y)
,

where α(x, y) = √
gij (x)yiyj and β(x, y) = bi(x)yi .

It has been shown F is a Finsler metric if and only if for any x ∈ M, ‖βx‖α < 1, where

‖βx‖α =
√

bibi =
√

gij bibj .

In a natural way, the Riemannian metric g induces an inner product on any cotangent space
T ∗

x M such that 〈dxi(x), dxj (x)〉 = gij (x). The induced inner product on T ∗
x M induce a linear

isomorphism between T ∗
x M and TxM . Then the 1-form b corresponds to a vector field X̃ on

M such that

g(y, X̃(x)) = β(x, y).

Also we have ‖β(x)‖α = ‖X̃(x)‖α (for more details see [12]).
Therefore we can write the Finsler metric F = (α+β)2

α
as follows:

F(x, y) = (α(x, y) + g(X̃(x), y))2

α(x, y)
,

where for any x ∈ M,
√

g(X̃(x), X̃(x)) = ‖X̃(x)‖α < 1.
In this paper we use this representation of F (for more details about Finsler metrics

see [7, 18]).

3. Flag curvature of invariant metrics of type (α+β)2

α
on homogeneous spaces

In this section, we give an explicit formula for the flag curvature of invariant (α, β)-metrics
of type (α+β)2

α
, where α is induced by an invariant Riemannian metric g on the homogeneous

space and the Chern connection of F coincides to the Levi-Civita connection of g. For this
purpose we need Püttmann’s formula for the curvature tensor of invariant Riemannian metrics
on homogeneous spaces (see [16]).

Let G be a compact Lie group, H a closed subgroup and g0 a bi-invariant Riemannian
metric on G. Assume that g and h are the Lie algebras of G and H respectively. The tangent
space of the homogeneous space G/H is given by the orthogonal complement m of h in g

with respect to g0. Each invariant metric g on G/H is determined by its restriction to m.
We extend this AdH -invariant inner product on m to an AdH -invariant inner product on g by
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taking g0 for the components in h. In this way the metric on G/H determines a unique left
invariant, H-biinvariant metric g on G that we also denote by g (see [16]). Suppose that g

is an invariant metric on G/H . The values of g0 and g at the identity are inner products on
g which we denote as 〈., .〉0 and 〈., .〉. The inner product 〈., .〉 determines a positive definite
endomorphism φ of g such that 〈X, Y 〉 = 〈φX, Y 〉0 for all X, Y ∈ g.

Theorem 3.1. Let G,H, g, h, g, g0 and φ be as above. Assume that X̃ is an invariant
vector field on G/H which is g(X̃, X̃) < 1 and X := X̃H . Suppose that F = (α+β)2

α
is the

Finsler metric arising from g and X̃ such that its Chern connection coincides to the Levi-Civita
connection of g. Suppose that (P, Y ) is a flag in TH (G/H) such that {Y,U} is an orthonormal
basis of P with respect to 〈., .〉. Then the flag curvature of the flag (P, Y ) in TH (G/H) is given
by

K(P, Y ) = 6〈X,R(U, Y )Y 〉.〈X,U 〉 + 〈R(U, Y )Y,U 〉(1 − 〈X, Y 〉2)

(1 + 〈X, Y 〉)4(2〈X,U 〉2 − 〈X, Y 〉2 + 1)
, (3.1)

where

〈X,R(U, Y )Y 〉 = 1
4 (〈[φU, Y ] + [U, φY ], [Y,X]〉0 + 〈[U, Y ], [φY,X] + [Y, φX]〉0)

+ 3
4 〈[Y,U ], [Y,X]m〉 + 1

2 〈[U, φX] + [X,φU ], φ−1([Y, φY ])〉0

− 1
4 〈[U, φY ] + [Y, φU ], φ−1([Y, φX] + [X,φY ])〉0 (3.2)

and

〈R(U, Y )Y,U 〉 = 1
2 〈[φU, Y ] + [U, φY ], [Y,U ]〉0

+ 3
4 〈[Y,U ], [Y,U ]m〉 + 〈[U, φU ], φ−1([Y, φY ])〉0

− 1
4 〈[U, φY ] + [Y, φU ], φ−1([Y, φU ] + [U, φY ])〉0. (3.3)

Proof. The Chern connection of F coincides on the Levi-Civita connection of g therefore we
have RF (U, V )W = Rg(U, V )W , where RF and Rg are the curvature tensors of F and g,
respectively. Let R := Rg = RF be the curvature tensor of F (or g). The flag curvature is
defined as follows [18]:

K(P, Y ) = gY (R(U, Y )Y,U)

gY (Y, Y ).gY (U,U) − g2
Y (Y,U)

, (3.4)

where gY (U, V ) = 1
2

∂2

∂s∂t
(F 2(Y + sU + tV ))|s=t=0.

By using the definition of gY (U, V ) and some computations for F we have

gY (U, V ) = 4(
√

g(Y, Y ) + g(X, Y ))3

g(Y, Y )5/2
{g(X, V )g(Y,U) − g(Y, V )g(X,U)}

+
2(

√
g(Y, Y ) + g(X, Y ))2

g(Y, Y )

{
g(U, V ) + g(X,U)g(X, V )

− g(X, Y )g(Y, V )g(Y,U)

g(Y, Y )3/2
+

1√
g(Y, Y )

(g(X,U)g(Y, V )

+ g(X, Y )g(U, V ) + g(X, V )g(Y,U))

}
+

(
√

g(Y, Y ) + g(X, Y ))4

g(Y, Y )3

×{4g(Y,U)g(Y, V ) − g(U, V )g(Y, Y )} +
4(

√
g(Y, Y ) + g(X, Y ))2

g(Y, Y )

×
(

g(Y, V )√
g(Y, Y )

+ g(X, V )

) (
g(Y,U)√
g(Y, Y )

+ g(X,U) − 2g(Y,U)√
g(Y, Y )

− 2g(X, Y )g(Y,U)

g(Y, Y )

)
. (3.5)
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By using (3.5) and the fact that {Y,U} is an orthonormal basis for P with respect to g we have

gY (R(U, Y )Y,U) = (1 + 〈X, Y 〉)2{2〈X,U 〉 · 〈Y,R(U, Y )Y 〉 · (1 − 2〈X, Y 〉)
+ 6〈X,R(U, Y )Y 〉 · 〈X,U 〉 + 〈R(U, Y )Y,U 〉 · (1 − 〈X, Y 〉2)} (3.6)

and

gY (Y, Y ) · gY (U,U) − g2
Y (U, Y ) = (1 + 〈X, Y 〉))6(2〈X,U 〉2 − 〈X, Y 〉2 + 1). (3.7)

Also by using Püttmann’s formula (see [16] or [17]) and some computations we have

〈X,R(U, Y )Y 〉 = 1
4 (〈[φU, Y ] + [U, φY ], [Y,X]〉0 + 〈[U, Y ], [φY,X] + [Y, φX]〉0)

+ 3
4 〈[Y,U ], [Y,X]m〉 + 1

2 〈[U, φX] + [X,φU ], φ−1([Y, φY ])〉0

− 1
4 〈[U, φY ] + [Y, φU ], φ−1([Y, φX] + [X,φY ])〉0, (3.8)

〈R(U, Y )Y, Y 〉 = 0 (3.9)

and

〈R(U, Y )Y,U 〉 = 1
2 〈[φU, Y ] + [U, φY ], [Y,X]〉0 + 3

4 〈[Y,U ], [Y,U ]m〉
+ 〈[U, φU ], φ−1([Y, φY ])〉0

− 1
4 〈[U, φY ] + [Y, φU ], φ−1([Y, φU ] + [U, φY ])〉0. (3.10)

Substituting equations (3.6)–(3.10) into equation (3.4) completes the proof. �

Now we consider a special case of Riemannian homogeneous spaces which has been
named naturally reductive. In this case the above formula for the flag curvature reduces to a
simpler equation.

Definition 3.2 (See [13]). A homogeneous space M = G/H with a G-invariant indefinite
Riemannian metric g is said to be naturally reductive if it admits an ad(H)-invariant
decomposition g = h + m satisfying the condition

B(X, [Z, Y ]m) + B([Z,X]m, Y ) = 0 for X, Y,Z ∈ m,

where B is the bilinear form on m induced by g and [,]m is the projection to m with respect to
the decomposition g = h + m.

Theorem 3.3. In the previous theorem let G/H be a naturally reductive homogeneous space.
Then the flag curvature of the flag (P, Y ) in TH (G/H) is given by

K(P, Y ) = 6〈X,R(U, Y )Y 〉.〈X,U 〉 + 〈R(U, Y )Y,U 〉(1 − 〈X, Y 〉2)

(1 + 〈X, Y 〉)4(2〈X,U 〉2 − 〈X, Y 〉2 + 1)
,

where

〈X,R(U, Y )Y 〉 = 1
4 〈X, [Y, [U, Y ]m]m〉 + 〈X, [Y, [U, Y ]h]〉 (3.11)

and

〈R(U, Y )Y,U〉 = 1
4 〈U, [Y, [U, Y ]m]m〉 + 〈U, [Y, [U, Y ]h]〉 (3.12)

Note that [,]m and [,]h are the projections of [,] to m and h respectively.

Proof. By using proposition 3.4 in [13] (page 202) we have

R(U, V )W = 1
4 [U, [V,W ]m]m − 1

4 [V, [U,W ]m]m

− 1
2 [[U,V ]m,W ]m − [[U,V ]h,W ] for U,V,W ∈ m,

4
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hence

R(U, Y )Y = 1
4 [Y, [U, Y ]m]m + [Y, [U, Y ]h].

Now by substituting the last relation into the formula which is obtained in theorem 3.1, the
proof is completed. �

As a special case of naturally reductive Riemannian homogeneous spaces we can consider
Lie groups equipped with bi-invariant Riemannian metrics. Therefore we have the following
corollary.

Corollary 3.4. Let G be a Lie group, g be a bi-invariant Riemannian metric on G, and X̃

be a left invariant vector field on G such that g(X̃, X̃) < 1. Suppose that F = (α+β)2

α
is the

Finsler metric arising from g and X̃ on G such that the Chern connection of F coincides on the
Levi-Civita connection of g. Then for the flag curvature of the flag P = span{Y,U}, where
{Y,U} is an orthonormal basis for P with respect to g, we have

K(P, Y ) = 6〈X, [Y, [U, Y ]]〉 · 〈X,U 〉 + 〈U, [Y, [U, Y ]]〉(1 − 〈X, Y 〉2)

4(1 + 〈X, Y 〉)4(2〈X,U 〉2 − 〈X, Y 〉2 + 1)
.

Proof. g is bi-invariant therefore (G, g) is naturally reductive. Now by using theorem 3.3 the
proof is completed. �

Now we give some results which limit Lie groups that have a Finsler metric of type
described in theorem 3.1.

Theorem 3.5. There is no left invariant non-Riemannian (α, β)-metric of the type described
in theorem 3.1 on connected Lie groups with a perfect Lie algebra, that is, a Lie algebra g for
which the equation [g, g] = g holds.

Proof. If the Chern connection of F coincide on Levi-Civita connection of the left invariant
Riemannian metric g then, F is of Berwald type. Therefore left invariant vector field X is
parallel with respect to g and by using lemma 4.3 of [8], g(X, [g, g]) = 0. Since g is perfect
therefore X must be zero. �

Corollary 3.6. There is no left invariant non-Riemannian (α, β)-metric of the type described
in theorem 3.1 on semisimple connected Lie groups.

Corollary 3.7. If a Lie group G admits a left invariant non-Riemannian (α, β)-metric of the
type described in theorem 3.1 then for sectional curvature of the Riemannian metric g we have

K(X, u) � 0

for all u, where equality holds if and only if u is orthogonal to the image [X, g].

Proof. Since F is of the Berwald type, X is parallel with respect to g. By using lemma 4.3 of
[8], ad(X) is skew-adjoint, therefore by lemma 1.2 of [14] we have K(X, u) � 0. �
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